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Lesson Study is a format to build and analyse classroom teaching where teachers and
researchers combine to design lessons, predict how the lessons might be expected to
develop, then carry out the lessons with a group of observers bringing multiple
perspectives on what actually happened during the lesson. This article considers how a
lesson, or group of lessons, observed as part of a lesson study may be placed in a
long-term framework of learning, focusing on the essential objective of improving the
long-term learning of every individual in classroom teaching.

INTRODUCTION

This paper began as a result of a participation in a lesson study conference (Tokyo &
Sapporo, December 2006) in which four lessons were studied as part of an APEC
(Asian and Pacific Economic Community) study to share ideas in teaching and
learning mathematics to improve the learning of mathematics throughout the
communities. It included the observation of four classes (here given in order of grade,
rather than order of presentation):

Placing Plates (Grade 2)
December 2nd 2006, University of Tsukuba Elementary School

- Takao Seiyama

Multiplication Algorithm (Grade 3)
December 5th 2006, Sapporo City Maruyama Elementary School
- Hideyuki Muramoto

Area of a Circle (Grade 5)
December 2nd 2006, Universty of Tsukuba Elementary School
- Yasuhiro Hosomizu

Thinking Systematically (Grade 6)
December 6th 2006, Sapporo City Hokuto Elementary School
- Atsutomo Morii

The objective of this paper is to set these classes within a long -term framework of
development outlined in Tokyo at the conference (Tall, 2006), which sets the growth
of individual children within a broader framework of mathematical development.
Long-term the development of individual children depends not only on the
experiences of the lesson, but in the experiences of the children prior to the lesson
and how experiences ‘met-before’ have been integrated into their current knowledge
framework.

In general, it is clear that lesson study makes a genuine attempt:



to design a sequence of lessons according to well-considered objectives;
to predict what may happen in a lesson;

to have a group of observers bring multiple perspectives to what happened,
without prejudice; and ultimately

to improve the teaching of mathematics for all.

Lesson study is based on a wide range of communal sharing of objectives. At the
meeting I was impressed by one essential fact voiced by Patsy Wang -Iverson:

The top eight countries in the most recent TIMMS studies shared a
single charactistic, that they had a smaller number of topics studied each year.

Success comes from focusing on the most generative ideas, not from covering detail
again and again. This suggests to me that we need to seek the generative ideas that are
at the root of more powerful learning.

For many individuals, mathematics is complicated and it gets more complicated as
new ideas are encountered. For a few others, who seem to grasp the essence of the ideas,
the complexity of mathematics is fitted together in a way that makes it essentially
simple way. My head of department at Warwick University in the sixties, Sir
Christopher Zeeman noted perceptively:

“Technical skill is a mastery of complexity, while creativity is a mastery of
simplicity” (Zeeman, 1977)

This leads to the fundamental question:

How can we help each and every child find this simplicity, in a way that works,
for them?

Lesson study focuses on the whole class activity. Yet within any class each child
brings differing levels of knowledge into that class, related not only to what they have
experienced before, but how they have made connections between the ideas and how
they have found their own level of simplicity in being able to think about what they
know.

To see simplicity in the complication of detail requires the making of connections
between ideas and focusing on essentials in such a way that these simple essentials
become generating principles for the whole structure.

In my APEC presentation in Tokyo (Tall 2006), I sought this simplicity in the way that
we humans naturally develop mathematical ideas supported by the shared experiences
of previous generations. I presented a framework with three distinct worlds of
mathematical development, two of which dominate development in school and the third
evolves to be the formal framework of mathematical research. The two encountered in
school are based on (conceptual) embodiment and (proceptual) symbolism. I described
these technical terms in more detail in Tall (2006) and in a range of other recent
papers on my website (www.davidtall.com/papers).



Essentially, conceptual embodiment is based on human perception and reflection. It
is a way of interacting with the physical world and perceiving the properties of
objects and, through thought experiments, to see the essence of these properties and
begin to verbalise them and organize them into coherent structures such as Euclidean
geometry. Proceptual symbolism arises first from our actions on objects (such as
counting, combining, taking away etc) that are symbolized as concepts (such as
number) and developed into symbolic structures of calculation and symbolic
manipulation through various stages of arithmetic, algebra, symbolic calculus, and so
on. Here symbols such as 4+3, x2 + 2x +1, ! sin x dx all dually represent processes

to be carried out (addition, evaluation, integration, etc) and the related concepts that
are constructed (sum, expression, integral, etc). Such symbols also may be
represented in different ways, for instance 4+3 is the same as 3+4 or even ‘1 less than
4+4’ which is ‘1 less than 8’ which is 7. This flexible use of symbols to represent
different processes for giving the same underlying concept is called a procept.

These two worlds of (conceptual) embodiment and (proceptual) symbolism
develop in parallel throughout school mathematics and provide a long-term framework
for the development of mathematical ideas throughout school and on to university,
where the

Figure 1. The three mental worlds of (conceptual) embodiment,
(proceptual) symbolism and (axiomatic) formalism



focus changes to the formal world of set-theoretic definition and formal proof.

In figure 1 we see an outline of the huge complication of school mathematics. On the left
is the development of conceptual embodiment from practical mathematics of physical
shapes to the platonic methods of Euclidean geometry. In parallel, there is a development
of symbolic mathematics through arithmetic, algebra, and so on, with the two
blending as embodiment is symbolized or symbolism is embodied.

The long-term development begins with the child’s perceptions and actions on the
physical world. In figure 1 the child is playing with a collection of objects: a circle, a
triangle, a square, and a rectangle. The child has two distinct options, one to focus on his
or her perception of each object, seeing and feeling their separate properties, the other is
through action on the objects, say by counting them: one, two, three, four.

The focus on perception, with vision assisted by touch and other senses to play with the
objects to discover their properties, leads to a growing sense of space and shape,
developing through the use of physical tools—ruler, compass, drawing pins, thread—
to enable the child to explore geometric ideas in two and three dimensions, and on to the
mental construction of a perfect platonic world of Euclidean geometry. The focus on
the essential qualities of points having location but no size, straight lines having no
width but arbitrary extensions and on to figures made up using these qualities leads
the human mind to construct mental entities with these essential properties. Platonism is
a natural long-term construction of the enquiring human mind.

Meanwhile, the focus on action, through counting, leads eventually to the concept of
number and the properties of arithmetic that benefit from blending embodiment and
symbolism, for example, ‘seeing’ that 2 x 3= 3 ! 2 by visualizing 2 rows of 3 objects
being the same as 3 columns of 2 objects. Long-term there is a development of
successive number systems, fractions, rationals, decimals, infinite decimals, real
numbers, complex numbers. (What seems to the experienced mathematician as a
steady extension of number systems is, for the growing child, a succession of changes of
meaning which need to be addressed in teaching. We return to this later.)

The symbolic world develops through whole number arithmetic, fractions, decimals,
algebra, functions, symbolic calculus, and so on, which are given an embodied
meaning through the number-line, Cartesian coordinates, graphs, visual calculus,
with aspects of the embodied world such as trigonometry being realized in symbolic
form. In the latter stages of secondary schooling, the learner will meet more
sophisticated concepts, such as symbolic matrix algebra and the introduction of the
limit concept, again represented in both embodied and symbolic form.

The fundamental change to the formal mathematics of Hilbert leads to an axiomatic
formalism based on set-theoretic definitions and formal proof, including axiomatic
geometry, axiomatic algebra, analysis, topology, etc.

Cognitive development works in different ways in embodiment, symbolism and
formalism (Figure 2). In the embodied world, the child is relating and operating with



perceived objects (both specific and generic), verbalizing properties and shifting from
practical mathematics to the platonic mathematics of axioms, definitions and proofs.

In the symbolic world, development begins with actions that are symbolized and
coordinated for calculation and manipulation in successively more sophisticated
contexts. The shift to the axiomatic formal world is signified by the switch from
concepts that arise from perceptions of, and actions on, objects in the physical world
to the verbalizing of axiomatic properties to define formal structures whose further
properties are deduced through mathematical proof.

Focusing on the framework appropriate to school mathematics, we find the main
structure consists of two parallel tracks, in embodiment and symbolism, each
building on previous experience (met-befores), with

embodiment developing through perception, description, construction,
definition, deduction and Euclidean proof after the broad style suggested by
van Hiele;

symbolism developing through increasingly sophisticated compression of
procedures into procepts as thinkable contexts operating in successively
broader contexts.

Figure 2: long-term developments in the three worlds



These two developments are fundamentally different. On the one hand, embodiment
gives a global overall picture of a situation while symbolism begins with coordinating
actions, practicing sequences of actions one after another to build up a procedure,
perhaps refining this to give different procedures that are more efficient or more
effective, using symbolism to record the actions as thinkable concepts. The problem
here is that the many different procedures can, for some, seem highly complicated
and so the teacher faces the problem of reducing the complexity, perhaps by
concentrating on a single procedure to show the pupils what to do, without becoming
too involved in the apparent complications. Procedures, however, occur in time and
become routinized so that the learner can perform them, but is less able to think about
them. (Figure 3.)

As an example, consider the teaching of long-multiplication. First children need to
learn their tables for single digit multiplication from 0 ! 0 to 9 ! 9. They also need to
have insight into place value and decimal notation.

The method used by Hideyuki Muramoto in the lesson study at Sapporo City
Maruyama Elementary School on December 6, 2006 can be analysed in terms of an
initial embodiment representing 3 rows of 23. Here the learner can see the full set of
counters: the problem is how to calculate the total. The embodiment can be broken
down in various ways, separating each row into subsets appropriate to be able to
compute the total. In the previous lesson the students had already considered 3 rows
of 20 and had broken this into various sub-combinations, breaking each row into
10+10 or 5+5+5+5, or even 9+9+2, or 9+2+9. Now the problem related to breaking

Figure 3: Developmental framework through embodiment and symbolism



23 into sub-combinations, suggested possibilities included 10+10+3 and 9+5+9 (but
not 5+5+5+5). Three lots of 10+10+3 gives 30+30+9, which easily gives 60+9,
which is 69. Three lots of 9+5+9 is more difficult requiring the sum 27+15+27. Here we
have two different procedures giving the same result, 69, and the most productive way
forward is to break the number 23 into tens and units and multiplying each separately
by 3.

In this analysis, the embodiment gives the meaning of the calculation of a single digit
times a double digit number, while the various distinct sub-combinations give
different ways of calculation, from which the sub-combination as tens and units is
clearly the simplest and the most efficient.

The approach has a general format:

1. Embody the problem (here the product 23 ! 3);

2. Find several different ways of calculation (here 23 ! 3 is three lots of
10+10+3 or three lots of 9+9+5) where the embodiment gives meaning to
symbolism;

3. See flexibility, that all of these are the same;

4. See the standard algorithm is the most efficient.

Thus embodiment gives meaning while symbolism enables compression to an
efficient symbolic algorithm.

It may be that not all the children in the class will be able to cope with the different
procedures (for instance, one would expect the suggestion 9+5+9 to come from a
more able child and the computation would not be easy for some). Thus, the dynamic
of the whole class may not be shared by all individuals. The more successful may see the
different ways of computing the result as different procedures with the same

Figure 4: multi-digit arithmetic from embodiment to symbolism



effect, and meaningfully see that the standard algorithm is just one of many that is
chosen because it is efficient and simple. They may sense that it is not appropriate to
use a more complicated method like 3 times 9+9+5 and not even desire to carry it
through without this compromising their insight that different procedure s can give the
same result. Meanwhile, those who are less fluent in their tables may feel insecure
and seek an easy method to cope that is less complicated. A single procedure may
have its attractions, showing how to do it, without the complication of why it works. It may
have attractions to the teacher to teach the method by rote as this may have
short-term success without extra complication.
In this way, the same lesson may be seen very differently by different participants, at one
extreme, a great insight into the meaning and construction of the standard algorithm
within a rich conceptual framework, at another extreme, a great deal of complication
and a desire to cope by seeking a procedure that works rather than a situation which is
too complicated to understand. This bifurcation is what Gray & Tall (1994) called
the proceptual divide between those who seek to maintain procedures that work at the
time rather than flexible methods that require many meaningful connections in a
broader knowledge structure.
BLENDING KNOWLEDGE STRUCTURES IN THE BRAIN

In addition to this combination of embodiment and symbolism to give meaning to
number concepts and operations, there are subtle features of successive number
systems that cause additional problems. A mathematician may see successive
numbers systems such as:

Whole Numbers

Fractions

Rational Numbers

Positive and Negative numbers

Real Numbers consisting of rationals and irrationals

as a growing extension of the number system. They can all be marked on an
(embodied) number line and the child should be able to see how each one is extended
to the next. However, for the learner, each extension has subtle aspects which can
cause significant problems. We all know of the difficulty of introducing the concept of
fraction and of the problem of multiplying negative numbers. There are subtle
difficulties between counting and measuring:

Counting 1, 2, 3, ... has successive numbers, each with a next number and
no numbers in between. Multiplying these numbers gives a bigger result ... etc.

Measuring numbers are continuous without a ‘next’ number and have
fractions between. Multiplying can give a smaller result.

Elsewhere (e.g. Tall, 2007), I use the idea of conceptual blending from Fauconnier &
Turner (2003) to shed light onto the cognitive strengths and difficulties of long -term



learning in mathematics. Fauconnier and Turner share the distinction of being the
first cognitive scientists to integrate the fundamental ideas of compression and
blending of knowledge into a single framework. In considering how students learn
long-term, this suggests we need to be aware not only what experiences students have
had before, but how they compress this experience into thinkable concepts and how
different knowledge structures are blended together to produce new knowledge.

USINGALONG-TERMFRAMEWORKOFEMBODIMENTAND
SYMBOLISM IN LESSON STUDY

Putting together the ideas of growth in elementary mathematics discussed here and in the
earlier paper (Tall, 2006), we find that the parallel development of embodiment and
symbolism suggests:

Embodiment gives human meaning as prototypes, developing verbal
description, definition, deduction.

Symbolism is based initially on human action, leading to symbol use, either
through procedural learning or through conceptual compression to flexible
procept.

Experiences build met-befores in the individual mind that are used later to
interpret new situations.

Different experiences may be blended together, requiring a study of what
learners bring to a new learning experience.

Tall (2006) also observed:

Embodiments may work well in one context but become increasingly
complex; flexible symbolism may extend more easily.

This means that successful students may show a long-term tendency to shift to
symbolism to work in a way that is both more powerful and (for them) more simple.

In our earlier discussions in Tokyo, great emphasis was made not only on meaningful
learning of mathematical concepts and techniques, but also on problem-solving in
new contexts. Learning new concepts can be approached in a problem-solving
manner. My own view is that learners must take responsibility for their own learning,
once they have the maturity to do so, which includes developing their own methods for
solving problems. I also believe that teachers have a duty, as mentors, to help focus
students on methods that are powerful and have long-term value.

In studying lessons, therefore, we need some objectives to consider. There are so
many theories in the literature, from Bruner’s (1966) analysis into enactive iconic and
symbolic, Fischbein’s (1987) categorization into intuitive, algorithmic and formal, the
Pirie-Kieren theory (1994) with its ideas of ‘making’ and ‘having’ images and
successive levels of operation, Dreyfus and colleagues RBC theory (Recognising,
Building-With, Consolidating), theories of problem-solving (Schoenfeld 1985,
Mason et al. 1982) and so on. With such a wealth of ideas to choose from and build on
(and build with), I will hear focus on three simple ideas that are important. You may
choose different ones, but in the long run, it is important for those studying



lessons to have principles with which they are working and a fundamental framework for
each lesson study. I suggest the need in long-term development to focus on three
aspects:

Building thinkable concepts in (meaningful) knowledge structures;

Using knowledge structures in routine and problem situations (where
‘routine’ includes practising for fluency);

Proving knowledge structures (as required in context).

I would see these three aspects being applied before, during and after each lesson.

BEFORE: What is the purpose of the lesson

(e.g. Building new constructs, Using known routines or problem-solving,
Proving in some sense) and what concepts may the learners have in mind that
may be used in the lesson? (met-befores, blends, routines, problem-solving
techniques)

DURING: How do learners use their knowledge structures during the
lesson to make sense of it? (met-befores, blends, routines, problem-solving
techniques)

AFTER: What knowledge structures are developing that may be of value in
the future? (met-befores, blends, routines, problem-solving techniques)

LESSONS STUDIES

Four classes were videoed during our previous meeting in Japan, December, 2006.

Placing Plates (Grade 2)
December 2nd 2006, Universty of Tsukuba Elementary School
- Takao Seiyama;

Multiplication Algorithm (Grade 3)
December 5th 2006, Sapporo City Maruyama Elementary School

- Hideyuki Muramoto;

Area of a Circle (Grade 5)
December 2nd 2006, University of Tsukuba Elementary School
- Yasuhiro Hosomizu;

Thinking Systematically (Grade 6)
December 6th 2006, Sapporo City Hokuto Elementary School
- Atsutomo Morii.

My purpose is to focus on the role of these lessons in long-term learning, and to
consider how the long-term development of each and every student may be affected
by the lesson within the framework suggested above.

There is already a great deal of evidence of the use of broad principles in the planning of
the lessons which are formulated in the lesson plans. Taking a few quotes at
random we find:



The goal of the Mathematics Group at Maruyama is to develop students
ability to use what they learned before to solve problems in the new learning
situations by making connections.

In addition, we want to provide 3rd grade students with experiences in
mathematics that enable them to use why they learned before to give
problems in new learning situations by making connections.
Through teaching mathematics, I would like my students to develop ‘secure
ability’ for finding problems on their own, studying by themselves, thinking,
making decisions, and executing those decisions. Moreover, I would like to
help my students like mathematics as well as enjoy thinking.
In order for students to find better ideas to solve the problem, it is important
for the students to have an opportunity to feel that they really want to do so.

Starting in April (beginning of the school year), I taught the students to
look at something from a particular point of view such as ‘faster, easier, and
accurate’ when they think about something or when they compare
something.

If you think about the method that uses the table form this point of view,
students might notice that “it is accurate but it takes a long time to figure
out: or “it is accurate but it is complicated.”

In order to solve a problem in a short time and with less complexity, it is
important for the students to notice that calculation using a math sentence in
necessary.

Each of these shows a genuine desire for students to make connections, to rely on
themselves for making decisions and to seek more powerful ways of thinking with
less complexity. The videos of the classes themselves show high interaction between the
students, and with the teacher, carefully orchestrated by the teacher to bring out
essential ideas in the lesson.

We now briefly look at each lesson in turn, to see how it fits with a long-term
development blending embodiment and symbolism, what aspects of Building, Using,
and Proving arise as an explicit focus of attention, before, during, and after the lesson.
In particular, we need to look deeper at how individual children respond to the lesson in
ways that may be appropriate for their long-term development of powerful mathematical
thinking.

In the pages which follow, I reproduce overheads from my presentation that look at
each of the lessons to see where it fits in the overall plan of building ideas from a
blend of embodiment and symbolism to build use and prove powerful mathematical
concepts. This is, in no way, intended to be a once-and-for-all analysis. It is offered
as a preliminary analysis for those developing lesson study to initiate discussion on
how to implement the techniques of lesson study within a long-term framework that
focuses on improving the learning of mathematics for each and every student.













In Britain, attention is turning to the needs of ‘pupils at risk’ who need extra support and
to the ‘gifted and talented’ who need extra challenges.

É for pupils at risk of falling behind, early intervention and special support to
help them catch up. This is already underway with the ‘Every Child a
Reader’ programme for literacy, which is now being matched with the ‘Every
Child Counts’ initiative for numeracy, alongside one-to-one tuition for up to
another 600,000 children.Gordon Brown, The Guardian, May 15, 2007

However, it is not a linear race, with some ‘falling behind’ and others ‘racing ahead’. It
is also a question of different kinds of learning and different ways of coping.

Assuming our major purpose is to improve the long-term learning of mathematics for
each and every one of our children, I suggest that there is a need for lesson study to
be placed in a long-term framework to design and monitor the long-term
development of individuals, to gain insight not only what needs to be learnt and how,
but also why some develop flexible, powerful mathematical thinking and others have
serious difficulty.

The framework offered is based on the different styles of cognitive growth in
embodiment and symbolism over the long -term, and the way in which different
individuals build on mental structures based on ideas met-before.
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